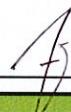


JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

MODULE 13 - Production Logging

OBJECTIVES

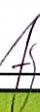

Upon completion this task you should be able to:

THEORY

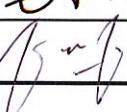
1	Explain the applications of production logging.	✓
2	Explain the job design briefly. How many different speed required for the logging and why ?	✓
3	What are the types sensors used in production logging? What are the general principles of operation?	✓
4	How do you determine spinner selection ?	✓
5	What do the direction of spinner determine?	✓
6	What is spinner calibration? What happens to the spinner speeds with increase or decrease?	✓
7	What is single phase? What are the basic sensors required?	✓
8	What is multi phases fluid? What are the basic sensors required?	✓
8	Explain how the calibrations carried out at site prior to job and why we need it.	✓
9	What will happen if we don't have these calibrations prior to logging?	✓
11	Explain the purpose of station stop in logging.	✓
12	Explain crossflow behavior.	✓
13	Explain what is ADF.	✓
14	Explain how inclination effects the flow.	✓
15	Explain when we require multiprobe PLT.	✓
16	Explain when we require to relog/rerun.	✓

Grade:

100 %


Supervisor
Signature:

PRACTICAL


1	Produce PLT Field Quick Look Report and Full Interpretation report. Submit and present the PLT result. Submit together with PLT log package.	✓
2	Do maintenance on PLT. Learn how to service, calibrate and bench test PLT under supervision.	✓
3	Emeraude skills	✓

Grade:

100 %

Supervisor
Signature:

COMMENTS BY SUPERVISOR

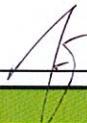
Name:	CLEMENT EMANG	Signature:		Date:	3/10/2023
Manager's Name:	PAUL	Manager Signature:		Date:	03/10/2023.

JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

MODULE 13 - Cement Bond Log

OBJECTIVES


Upon completion this task you should be able to:

THEORY

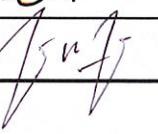
1	Explain the purpose of running CBL tool.	✓
2	What is the principle behind a Cement Bond Log?	✓
3	What is the basic quality control for a CBL log?	✓
4	What is VDL and what data can be acquired from VDL ?	✓
5	What is a Cycle Skipping? What happens to TT when there is cycle skipping and if there is noise?	✓
6	Why are the fluid properties important for running the CBL tool?	✓
7	Why are casing properties important for running a bond log?	✓
8	How does the CBL tool calibrated?	✓
9	What will happen if we don't have these calibrations prior to logging?	✓
10	What is microannulus and how to prevent microannulus effect ?	✓
11	Explain when we require to relog/rerun and any changes in well condition.	✓

Grade:

100%

Supervisor
Signature:

PRACTICAL



1	Produce CBL log package and Full Interpretation report. Submit and present the CBL result. Submit together with CBL log package.	✓
2	Do maintenance on CBL. Learn how to service, calibrate and bench test CBL under supervision.	✓
3	Warrior skills	✓

Grade:

100%

Supervisor
Signature:

COMMENTS BY SUPERVISOR

Name:	CLEMENT EMANG	Signature:		Date:	3/10/2023
Manager's Name:	FAIRIS	Manager Signature:		Date:	03/10/2023.

JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

MODULE 13 - Multifinger Imaging Tool

OBJECTIVES

Upon completion this task you should be able to:

THEORY

1	Explain the purpose of running MIT tool.	✓
2	Explain the how the job is design to meet the objective/s.	✓
3	What are the input need for MIT ? Explain the importance of those info prior to job start.	✓
4	How do you read the finger traces from the log and explain.	✓
5	Explain how you QC the fingers in real time and memory.	✓
6	Explain the principle of MIT tool and output from the analysis.	✓
7	What are the damage classifications of MIT ?	✓
8	What are the indications from the color maps of WIVA software?	✓
9	Explain each of calibration files required/acquired for pre & post job and why it is important.	✓
10	What is the accuracy for MIT tool ? How do you QC from the log ?	✓
11	Explain when you require to change fingers.	✓
12	Explain when you require to relog/rerun.	✓

Grade: 100%Supervisor
Signature: J

PRACTICAL

1	Produce MIT Field Quick Look Report and Full Analysis report. Submit and present the MIT result. Submit together with MIT log package.	✓
2	Do maintenance on MIT. Learn how to service, change fingers and bench test MIT under supervision.	✓
3	WIVA WIPER software skills.	✓

Grade: 100%Supervisor
Signature: J

COMMENTS BY SUPERVISOR

Name:	CLEMENT EMANG	Signature:	<u>Chukwu</u>	Date:	3/10/2023
Manager's Name:	<u>FAIRIS</u>	Manager Signature:	<u>J</u>	Date:	03/10/2023.

JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

MODULE 13 - Fluid Identifications

OBJECTIVES

Upon completion this task you should be able to:

THEORY

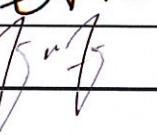
1	What tool acquires Fluid density reading? What are the applications?	✓
2	Describe the principle of FDR and CWH.	✓
3	What is difference between FDR & CWH ?	✓
4	What is holdup ?	✓
5	What is Jetting, Restriction and riser surge? How they affect the reading?	✓
6	What are holdup and bubble count? How are they measured?	✓
7	What tools provide hold up readings? Differences are?	✓
8	How is the bubble size measure?	✓
9	What is the continuous phase? How should the threshold be set?	✓
10	How do the measurements differ for an electrical probe and an optical probe?	✓
11	How is the calibration done for the probes on surface?	✓
12	How does salinity affect the response of the electrical probe?	✓
13	What is position of probes? Does it affect the measurement?	✓

Grade:

100 %

Supervisor
Signature:

PRACTICAL


1	Do maintenance on CWH/FDR/CAT/RAT. Learn how to service, change sensors and probe.	✓
2	Perform tools bench test with sensors on under supervision.	✓

Grade:

100 %

Supervisor
Signature:

COMMENTS BY SUPERVISOR

Name:	CLEMENT EMANG	Signature:		Date:	3/10/2023
Manager's Name:	FAIRIS	Manager Signature:		Date:	03/10/2023

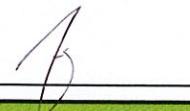
JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

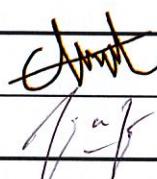
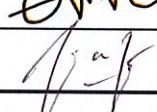
MODULE 13 - Pressure Temperature

OBJECTIVES

Upon completion this task you should be able to:


THEORY

1	What are the main applications of pressure measurement in production logging?	<input checked="" type="checkbox"/>
2	What are the applications of a temperature log?	<input checked="" type="checkbox"/>
3	What are the problems if we log a temperature log too fast?	<input checked="" type="checkbox"/>
4	Is a better temperature log taken while logging down or while logging up?	<input checked="" type="checkbox"/>
5	How do you differentiate activity behind tubing and casing ?	<input checked="" type="checkbox"/>



Grade: W02Supervisor
Signature:

PRACTICAL

1	Do maintenance on PRT & QPS. Learn how to service tools.	<input checked="" type="checkbox"/>
2	Perform tools bench test with sensors on under supervision.	<input checked="" type="checkbox"/>

Grade: W02Supervisor
Signature:

COMMENTS BY SUPERVISOR

Name:	CLEMENT EMANG	Signature:		Date:	3/10/2023
Manager's Name:	<u>FARIS</u>	Manager Signature:		Date:	03/10/2023

JUNIOR LOG ANALYST TRAINING MODULE

DIMENSION BID

MODULE 13 - Pressure Gradient

OBJECTIVES

Upon completion this task you should be able to:

THEORY

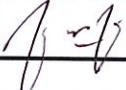
1	Explain the objective of running SGS & FGS.	✓
2	Explain what is gradient.	✓
3	Explain what is datum.	✓
4	How do you QC pressure and temperature reading ?	✓
5	How do you know if your tool is within the acceptable range of P & T ?	✓
6	What is the purpose of running P & T in station stops ?	✓
7	Why do you need 2 gauges run in tandem ?	✓
8	Gives values for typical fluid gradient for gas, oil and water.	✓
9	Explain how can you predict BHP at one interest depth, eg. perforation depth.	✓
10	Explain the geothermal effect in fluid and gas.	✓
11	Explain how you design SGS & FGS logging program.	✓
12	Explain when we require to relog/rerun.	✓

Grade:

100 %

Supervisor
Signature:

PRACTICAL


1	Produce SGS & FGS Interpretation Report. Submit and discuss with your Log Analyst.	✓
2	Understand the interpretation worksheet and output produced.	✓
3	Understand different data set from different tools to analyse.	✓

Grade:

100 %

Supervisor
Signature:

COMMENTS BY SUPERVISOR

Name:	CLEMENT EMANG	Signature:		Date:	3/10/2023
Manager's Name:	PARIS	Manager Signature:		Date:	03/10/2023